

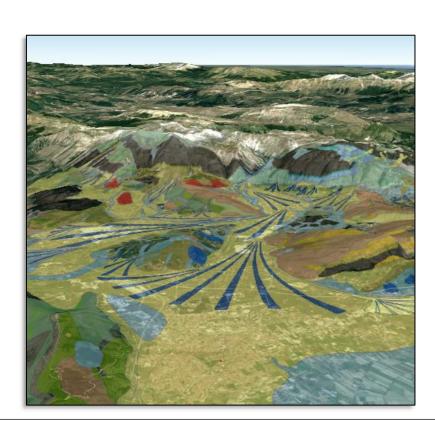
Con il patrocinio di:

IL FUTURO IN COSTRUZIONE. L'INNOVAZIONE DIVENTA SCUOLA SOSTITUZIONE EDILIZIA DELLA SCUOLA PRIMARIA "GIOVANNI XXIII"

CONCORSO DI PROGETTAZIONE IN DUE GRADI MEDIANTE L'USO DI MATERIALI E TECNICHE A RIDOTTO IMPATTO AMBIENTALE DURANTE IL CICLO DI VITA DELL'OPERA CPV: 71221000-3Ù

ALLEGATO 4.2: Relazione di Modellazione Sismica

cel. 328-0861212



COMUNE DI AVEZZANO

"Relazione geologica preliminare per la realizzazione di un nuovo edificio

(PROVINCIA DI L'AQUILA)

RELAZIONE DI MODELLAZIONE SISMICA

COMMITTENTE:

COMUNE DI AVEZZANO

Piazza della Repubblica 8, Avezzano (AQ).

NOVEMBRE / DICEMBRE 2018

COMUNE DI AVEZZANO

(PROVINCIA DI L'AQUILA)

PROGETTO: Relazione geologica preliminare per la realizzazione di un nuovo edificio scolastico in sostituzione della scuola primaria Giovanni XXIII.

COMMITTENTE: Comune di Avezzano (AQ).

CANTIERE: Avezzano Via F.Parri / Via A.Moro.

RELAZIONE DI MODELLAZIONE SISMICA

Il Geologo
Dott.ssa Camilla Di Bastiano

INDICE RELAZIONE DI MODELLAZIONE SISMICA

1. Sismicità storica e classificazione sismica	1
1.1 DISS (Database of Individual Seismogenic Sources) v. 3.2	1
1.2 ITHACA (ITaly HAzard from CApable faults)	3
1.3 CEDIT (Catalogo italiano degli Effetti Deformativi del suolo Indotti da	
forti Terremoti	4
1.4 CPTI15 (Catalogo Parametrico dei Terremoti Italiani 2015)	4
2. Modello sismico del sito	6
2.1 Caratterizzazione sismica dei terreni	6
2.1.1 Prove sismiche: prova HVSR	7
2.1.2 Prove sismiche: prova MASW	12
2.1.3 Prove sismiche: prova DOWNHOLE	16
3. Modello sismico del terreno	18
4 Conclusioni	22

1. SISMICITÁ STORICA E CLASSIFICAZIONE SISMICA

Per quanto riguarda la sismicità dell'area oggetto di studio, si fa riferimento a differenti database: il database *DISS V. 3.2* per le sorgenti sismogenetiche, il progetto *ITHACA* per le faglie attive e capaci, i cataloghi *CEDIT* per gli effetti deformativi al suolo e *CPTI15* per i terremoti storici.

1.1 DISS (Database of Individual Seismogenic Sources) v. 3.2

Il DISS v.3 contiene al suo interno tre tipologie di sorgenti sismogenetiche:

- Sorgenti individuali (IS): per le quali viene proposta una rappresentazione tridimensionale semplificata del piano di faglia. Questo tipo di sorgente esibisce caratteristiche definite di estensione, movimento e massima magnitudo attesa.
- Sorgenti composite (CS): sono regioni estese contenenti un numero non specificato di sorgenti minori allineate che non sono ancora conosciute singolarmente. Le sorgenti composite non sono associate a uno specifico gruppo di terremoti storici.
- Sorgenti dibattute (DS): sono zone proposte in letteratura come potenziali sorgenti, ma considerate ancora non sufficientemente attendibili per entrare nel database.

L'area della Piana del Fucino è nota nella bibliografia geologica soprattutto per gli effetti causati dal terremoto del 1915 ed è ubicata in corrispondenza della sorgente composita ITCS025 Salto Lake – Ovindoli – Barrea, a cui è associata la sorgente individuale ITIS002 Fucino Basin (Fig. 1a). Le principali caratteristiche di queste sorgenti vengono riportate in Fig. 1b.

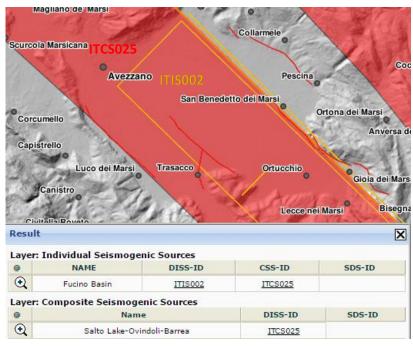


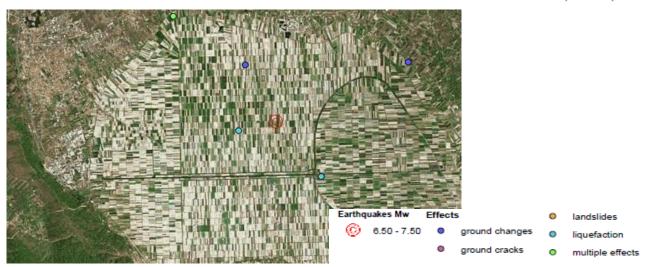
Figura 1a: Sorgente composita ITCS025 e sorgente sismogenetica individuale ITIS002. DISS v. 3.2

GENERAL INFORMATION				GENERAL INFORMATIO				
DISS-ID	ITCS025			DISS-ID	ITIS002			
Name	Salto Lake-C	Vindoli-Barrea		Name	Fucino Basin			
Compiler(s)			rrato P.(1), Fracassi U.(1), Kastelic V.(1), .(1), Vannoli P.(1)	Compiler(s)	V 20	urrato P.(1), Vannoli P.(1)		
Contributor(s)	Barba S.(1),	Basili R.(1), Bu	rrato P.(1), Fracassi U.(1), Kastelic V.(1), .(1), Vannoli P.(1)	Contributor(s)	Barba S.(1), Basili R.(1), Burrato P.(1), Fracassi U.(1), Kastelic V.(1) Tiberti M.M.(1), Valensise G.(1), Vannoli P.(1) 1) Istituto Nazionale di Geofisica e Vulcanologia; Sismologia e			
Affiliation(s)	1) Istituto Na	zionale di Geof	isica e Vulcanologia; Sismologia e furata, 605, 00143 Roma, Italy	Affiliation(s)	Tettonofisica; Vi		urata, 605, 00143 Roma, Italy	
Created	08-Jan-2005	i, via ai vigila ii	ididia, 555, 551-45 Noma, italy	Created	01-Jan-2001			
Updated	23-Dec-2011			Updated	12-May-2010			
Display map	8	•		Display map	8			
Related sources	ITIS002	TIS028		Related sources	ITCS025			
Parametric Informat	ION			PARAMETRIC INFORMA	TION			
Parameter		QUALITY	Evidence	PARAMETE	R	QUALITY	Evidence	
Min depth [km]	1.0	LD	Based on data of instrumental seismicity.	Location [Lat/Lon]	41.96 / 13.61	LD	Based on various geological, geodetic and seismological data.	
Max depth [km]	14.5	LD	Based on data of instrumental seismicity.	Length [km]	28.0	LD	Based on various geological, geodetic and seismological data.	
Strike [deg] min max	130150	LD	Based on geological data from various authors.	Width [km]	15.5	ER	Calculated using the relationships from Wells and Coppersmith (1994).	
Dip [deg] min max	4065	LD	Based on geological data from various authors.	Min depth [km]	1.5	LD	Based on various geological, geodeti and seismological data.	
Rake [deg] min max	260280	LD	Based on geological data from various authors.	Max depth [km]	14.9	LD	Based on various geological, geodeti and seismological data.	
Slip Rate [mm/y] min ma	x 0.11.7	LD	Based on paleoseismology and long- term geological markers.	Strike [deg]	135	LD	Based on various geological, geodeti and seismological data.	
Max Magnitude [Mw]	6.7	OD	Derived from maximum magnitude of associated individual source(s).	Dip [deg]	60	LD	Based on various geological, geodeti and seismological data.	
LD=Literature Data; OD=Original Data ACTIVE FAULTS	ta; ER=Empirical R	RELATIONSHIP; AR=AN	ALYTICAL RELATIONSHIP;EJ=Expert JUDGEMENT;	Rake [deg]	270	LD	Based on various geological, geodeti and seismological data.	
ID NAME			References	Slip Per Event [m]	1.06	LD	Estimated from geodetic data.	
1 Piano Pezza 2 Campo Porcaro		Pantosti et Pantosti et		Slip rate [mm/y] min max	1.21.7	LD	Based on paleoseismology and long- term geological marker.	
3 Monte Cefalone		Pantosti et	al. [1996], Salvi & Nardi [1995]	Recurrence [y] min max	14002600	LD	Based on paleoseismology.	
4 Monte Ocre		Salvi & Nar		Magnitude [Mw]	6.7	LD	Estimated from geodetic data.	
5 Luco		Galadini & (ANALYTICAL RELATIONSHIP;EJ=EXPERT JUDGEMENT;	
6 Trasacco 1		Galadini & (ED-EITERATORE DATA, OD-ORIGINAL I	DAIA, EIC-EMPIRICAE IVE	DALIONSHIP, AIX-7	ANALITICAL RELATIONSHIP, LU-LAPERT SOUGEMENT,	
7 Trasacco 2		Galadini & (INFORMATION ABOUT	THE ASSOCIAT	ED EARTH	QUAKES	
8 Marsicana Highway 1 9 Marsicana Highway 2		Galadini & (Galadini & (Latest Earthquake	13 Jan 1915		CPTI04.	
10 San Benedetto-Gioia de	i Marei 1	Galadini & (_		
11 San Benedetto-Gioia de		Galadini & (Penultimate Earthquake	508 A.D.	See	e "Commentary" for information.	
12 San Benedetto-Gioia de		Galadini & (ACTIVE FAULTS				
T! 41 D		•		ID	NAME		References	
_			stiche della sorgente	5 Luco			Galadini & Galli [1999]	
composita ITC	S025 e	della sor	rgente sismogenetica	6 Trasacco 1			Galadini & Galli [1999]	
				7 Trasacco 2			Galadini & Galli [1999]	
marviauaie III	3002 (Ft	icino bas	in). DISS v. 3.2	8 Marsicana Highway 1			Galadini & Galli [1999]	
				9 Marsicana Highway 2	2		Galadini & Galli [1999]	
				10 San Benedetto-Gioia	dei Marsi 1		Galadini & Galli [1999]	
				11 San Benedetto-Gioia	dei Marsi 2		Galadini & Galli [1999]	
				12 San Benedetto-Gioia	dei Marsi 3		Galadini & Galli [1999]	

Inoltre all'interno del DISS vengono riportati i sistemi di faglie attive. La città di Avezzano è ubicata tra un sistema di faglie NNW-SSE che delimita ad occidente il Bacino del Fucino (*Faglia di Luco*, *Faglia di Trasacco*) ed un sistema sempre con orientazione NNW-SSE che delimita il bacino verso est (*Faglie di San Benedetto - Gioia dei Marsi* e il sistema *Marsica Highway*) (Fig. 2).

Figura 2: Faglie attive nei pressi dell'area in esame (indicata dal cerchio giallo) DISS v. 3.2

1.2 ITHACA (ITaly HAzard from CApable faults)


Per quanto riguarda il tema delle faglie capaci (faglie che si sono rotte almeno una volta negli ultimi 40.000 anni, raggiungendo la superficie e producendo una rottura del terreno) si è fatto riferimento agli studi riportati nel progetto ITHACA (ITaly HAzard from CApable faults). Le sorgenti sismogenetiche rappresentano le zone che sono state riconosciute come origine dei terremoti grazie allo studio della sismicità storica e delle indagini geologiche. Il Servizio Geologico d'Italia - ISPRA ha sviluppato il progetto ITHACA, un database creato per la raccolta e la consultazione di tutte le informazioni disponibili riguardo le strutture tettoniche attive in Italia, con particolare attenzione ai processi tettonici che potrebbero generare rischi naturali. Il progetto si occupa in modo particolare delle faglie capaci, definite come faglie che potenzialmente possono creare deformazione in superficie. Dalla consultazione del catalogo ITHACA, non sono state individuate faglie nelle prossimità dell'area in studio.

1.3 CEDIT (Catalogo italiano degli Effetti Deformativi del suolo Indotti da forti Terremoti)

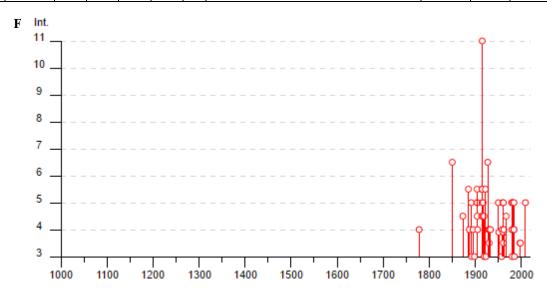
L'attività olocenica di importanti elementi strutturali, è messa in evidenza, infine, da fenomeni di fagliazione superficiale distribuiti su tutta l'area del Bacino del Fucino, che sono associati ad importanti eventi sismici (Fig. 4).

Come è possibile osservare dall'immagine, all'area oggetto di studio, non sono associati effetti deformativi del suolo.

THE ITALIAN CATALOGUE OF EARTHQUAKE-INDUCED GROUND FAILURES (CEDIT)

Figura 4: Effetti deformativi del suolo indotti dal terremoto del 13/01/1915 nell'areale della piana del Fucino. http://www.ceri.uniroma1.it/cn/gis.jsp

1.4 CPTI15 (Catalogo Parametrico dei Terremoti Italiani 2015)


Viene di seguito riportata una breve rassegna dei terremoti storici che hanno interessato l'area della Piana del Fucino (Fig. 5a, Fig. 5b).

Avezzano										
PlaceID		IT_55	5944							
Coordinate	(lat, lon)	42	.032, 1	13.426	Comur	ne (IS	STAT 2015) Avezzano AQ			
Regione		Abru	IZZO							
Numero di e	eventi ripo	rtati 7	71							
Effetti							In occasione del terremoto del			
Int. Anno Me Gi Ho Mi Se Area epicentrale				NMDP	lo	Mw				
4	1778	01	24	07	45		Marsica	6	67	4.86
67	1850	12	30	05	30		Marsica	4	6 7	4.86
45	1873	03	12	20	04		Appennino marchigiano	196	8	5.85
56	1885	04	10	01	44		Appennino lazialeabruzzese	44	5	4.57
NF	1887	01	27	02	45		Aquilano	30	5	4.17
4	1887	04	15	02	50		Marsica	2	45	3.93
5	1891	05	09	00	16		Val Roveto	41	5	4.42

	000	0.4	0.4		4-		14 H 14 G II		-	
	892	01	21	20	15	2	Valle del Salto	14	5	4.40
	895	08	09	17	38	2	Adriatico centrale	103	6	5.11
	895	11	01	22	20		Campagna romana	94	67	4.83
	898	06	27	23	38	2	Reatino	186	8	5.50
	904	02	24	15	53	2	Marsica	56	8 9	5.68
	904	02	25	00	29 55	1	Marsica	34	5 6 4 5	4.56 4.32
	904	03	03 10	18 04	21	3	Marsica Marsica	6 4	5	4.32
	905		25	20	41	3	Valle Peligna	29	6	5.15
	910	08	25	15	35		Magliano de' Marsi	13	5	4.16
	910	04	10	09	43		Colli Albani	79	6	4.74
	913	10	04	18	26		Molise	205	7.8	5.35
	914	04	14	02	49		Marsica	203	5	4.26
	915	01	13	06	52	4	Marsica	1041	11	7.08
	915	04	05	06	18	5	Valle dell'Aniene	21	6	4.80
	915	07	08	23	41	1	Marsica	1	U	4.00
	915	09	23	18	07		Marsica	18	6	5.07
	915	12	04	01	02		Marsica	27	5 6	4.47
	917	01	03	01	35		Marsica	57	3.0	7.77
	917	07	08	02	33		Appennino laziale abruzzese	44	5 6	4.68
	919	04	20	06	32		Marsica Marsica	11	45	4.11
	919	10	22	06	10		Anzio	142	67	5.22
	922	12	29	12	22	0	Val Roveto	119	67	5.24
	923	05	13	14	30	5	Valle del Salto	21	5	4.33
	927	10	11	14	45	0	Marsica	81	7	5.20
	927	12	26	15	06	1	Colli Albani	38	7	4.89
	929	01	14	04	01	_	Monti della Meta	32	4 5	4.42
	930	07	23	00	08		Irpinia	547	10	6.67
	931	10	21	07	35		Ciociaria	23	5	4.23
	933	09	26	03	33	2	Maiella	325	9	5.90
5 19	950	09	05	04	08		Gran Sasso	386	8	5.69
F 19	951	08	08	19	56		Gran Sasso	94	7	5.25
3 19	957	04	11	16	19		Valle del Salto	46	6	4.94
4 19	958	06	24	06	07		Aquilano	222	7	5.04
5 19	960	03	14	04	44		Marsica	40	7	4.72
5 19	961	04	06	11	34	4	Val Roveto	13	6	4.55
F 19	961	04	10	06	56		Alto Aniene	19	6	4.55
F 19	961	04	12	00	44		Alto Aniene	44	6 7	4.62
34 19	961	10	31	13	37		Reatino	84	8	5.09
4 19	962	08	21	18	19		Irpinia	562	9	6.15
45 19	967	12	03	21	29	5	Aquilano	32	5	4.37
5 19	979	09	19	21	35	3	Valnerina	694	8 9	5.83
4 19	980	06	09	16	02	4	Aquilano	28	6	4.64
	980	06	14	20	56	5	Marsica	69	5 6	4.96
3 19	980	10	01	00	57	3	Frusinate	41	5	4.26
4 19	980	11	23	18	34	5	IrpiniaBasilicata	1394	10	6.81
5 19	983	08	12	19	36	3	Monti della Meta	53	5	4.76
NF 19	984	04	29	05	02	5	Umbria settentrionale	709	7	5.62
5 19	984	05	07	17	50		Monti della Meta	912	8	5.86
	984	06	24	22	02	4	Monti della Meta	79	6	4.57
	984	07	01	07	47	1	Monti della Meta	74	6	4.63
1 3 1 10	985	05	20	10	00	2	Aquilano Monti Sibillini	29	5 6	4.51
	000					. (1	N/IODEL SIDIUM			/1 /1/-
2 19	986 990	10 05	13 05	05 07	10	2	Potentino	322 1375	5 6	4.46 5.77

e-mail:	camill	adiba	astiano	a	gmail.com	
---------	--------	-------	---------	----------	-----------	--

NF	1991	05	05	06	33	3	Aquilano	64	6	3.86
NF	1994	08	05	22	01	2	Val Roveto	81	5 6	4.15
2	1994	08	07	06	31	1	Val Roveto	103	5 6	4.25
2	1997	09	26	00	33	1	Appennino umbro marchigiano	760	78	5.66
34	1997	10	14	15	23	1	Valnerina	786		5.62
34	1998	05	12	21	46	3	Monti Simbruini	48	5	3.77
NF	1998	08	15	05	18	0	Reatino	233	5	4.42
2	2000	03	11	10	35	2	Valle dell'Aniene	214	6	4.25
2	2000	06	27	07	32	3	Valle dell'Aniene	138	6	4.24
5	2009	04	06	01	32	4	Aquilano	316	9 10	6.29

Figura 5b: Grafico illustrante la storia sismica di Avezzano dal 1000 al 2016. Sulle ascisse sono riportate le intensità sismiche (Is) dei terremoti rilevati, mentre sulle ordinate sono riportati i riferimenti temporali espressi in anni. (http://emidius.mi.ingv.it/CPTI15-DBMI15/query_place/).

2. MODELLO SISMICO DEL SITO

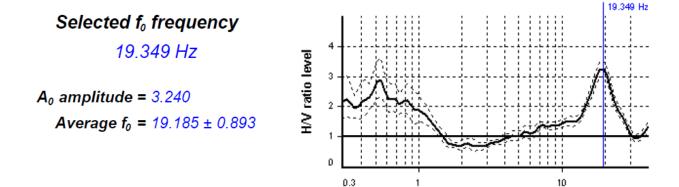
2.1 CARATTERIZZAZIONE SISMICA DEI TERRENI

Ai fini della caratterizzazione sismica del sito in studio è stata svolta una campagna di indagini geofisiche atte alla definizione del parametro Vs₃₀, utile ad inquadrare la categoria di suolo così come prescritto nel D.M. 14/01/2008 Nuove Norme Tecniche per le Costruzioni (NTC 2008). In particolare sono state eseguite le seguenti prove:

- 2 prove HVSR che consistono nella stima del rapporto fra lo spettro di ampiezza delle componenti orizzontali e quello della componente verticale dei microtremori sismici ambientali registrati da una singola stazione.
- o 3 prove MASW (Multichannel Analysis of Surface Waves) che tramite la registrazione della velocità di propagazione delle onde di superficie di Rayleigh e un successivo processo di

inversione, consentono una stima indiretta della distribuzione delle Vs (velocità di propagazione delle onde di taglio).

o 1 prova DOWN HOLE che permette di misurare le velocità delle onde (onde S e onde P) tramite l'energizzazione del terreno in superficie e la registrazione in foro degli spostamenti (tradotti sotto forma di impulsi elettrici). La registrazione viene effettuata attraverso un geofono triassiale, ancorato a profondità via via crescenti.


2.1.1 PROVE SISMICHE: PROVA HVSR

La tecnica HVSR consiste nella stima del rapporto fra lo spettro di ampiezza delle componenti orizzontali e quello della componente verticale dei microtremori sismici ambientali registrati da una singola stazione.

I tre segnali registrati sono stati elaborati mediante software dedicati che consentono di individuare le finestre di misure significative e quindi di analizzare nel campo della frequenza, il rapporto tra l'ampiezza delle componenti orizzontali rispetto alla componente verticale. Di seguito viene riportato il risultato della prova effettuata che mostra la frequenza fondamentale ricavata per il sito in esame e i criteri SESAME (Fig. 6), mentre i tracciati e le elaborazioni vengono riportati in *Allegato 5*.

o *HVSR 1*:

La prova HVSR_1 ha messo in evidenza la presenza di due picchi che presentano un rapporto H/V di circa 3. Un picco riguarda una frequenza f_0 di 19.349 Hz (con media di f_0 =19.185± 0.893 Hz) ed è caratterizzato da un'ampiezza di 3.24 (Fig.6a). Per il picco in esame sono rispettati tutti i criteri SESAME (Fig. 6b).

Frequency [Hz]

Figura 6a: Risultati della prova HVSR_1.

e-mail: camilladibastiano@gmail.com

SESAME CRITERIA

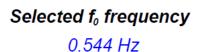

HVSR curve reliability criteria					
f ₀ > 10 / L _w	f ₀ > 10 / L _w 19 valid windows (length > 0.52 s) out of 19				
$n_c(f_0) > 200$	14705.25 > 200	OK			
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0$	Exceeded 0 times in 23	OK			
HVS	R peak clarity criteria				
$\exists f \text{ in } [f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$	12.66703 Hz	OK			
$\exists f^{+} \text{ in } [f_{0}, 4f_{0}] \mid A_{H/V}(f^{+}) < A_{0}/2$	27.82014 Hz	ок			
A ₀ > 2	3.24 > 2	ок			
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0% <= 5%	ок			
$\sigma_f < \epsilon(f_0)$	0.89295 < 0.96745	ок			
$\sigma_A(f_0) < \theta(f_0)$	1.0889 < 1.58	ок			
Overall criteria fulfillment					

Figura 6b: Risultati della prova HVSR_1.

SARA electronic instruments srl - GeoExplorer HVSR 2.2.1

www.sara.pg.it

Il secondo picco relativo alla prova HVSR_1 interessa le basse frequenze; in particolare il picco è relativo alla frequenza f_0 pari a 0.544 Hz (con media di f_0 =0.520± 0.081 Hz) con un'ampiezza di 2.880 (Fig.7a). Il picco in esame soddisfa complessivamente i criteri SESAME (Fig.7b).

 A_0 amplitude = 2.880

Average $f_0 = 0.520 \pm 0.081$

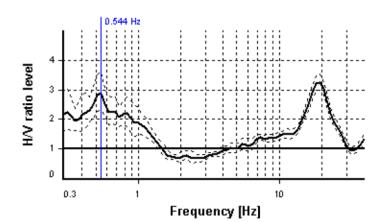


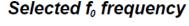
Figura 7a: Risultati della prova HVSR_1.

e-mail: camilladibastiano@gmail.com

SESAME CRITERIA

HVSR curve reliability criteria					
f ₀ > 10 / L _w	$f_0 > 10 / L_w$ 19 valid windows (length > 18.37 s) out of 19				
n₀(f₀) > 200	413.76 > 200	ок			
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0$	Exceeded 0 times in 23	OK			
HVS	R peak clarity criteria				
$\exists f \text{ in } [f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$	0 Hz	NO			
$\exists f^{+} \text{ in } [f_{0}, 4f_{0}] \mid A_{H/V}(f^{+}) < A_{0}/2$	1.27029 Hz	ок			
A ₀ > 2	2.88 > 2	ок			
$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	0% <= 5%	ок			
$\sigma_{\rm f} < \varepsilon({\rm f_0})$	0.08134 < 0.08166	ок			
$\sigma_A(f_0) < \theta(f_0)$	1.24891 < 2	OK			
Overall criteria fulfillment					

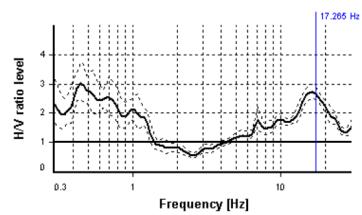
Figura 7b: Risultati della prova HVSR_1.


SARA electronic instruments srl - GeoExplorer HVSR 2.2.1

www.sara.pg.it

La prova HVSR_1 ha messo in evidenza, quindi, due contrasti di impedenza sismica: uno interessa lo strato di terreno più superficiale (quello a 19.349 Hz), l'altro va ad individuare possibilmente il substrato dell'area in esame essendo relativo a profondità più elevate (picco a 0.544 Hz).

o *HVSR 2:*


La prova HVSR_2 conferma sostanzialmente il risultato della prova HVSR_1; anche in questo caso la prova mette in evidenza la presenza di due picchi differenti. Un picco interessa la frequenza $f_0 = 17.265$ Hz (con media di $f_0 = 16.598 \pm 1.038$ Hz) e ampiezza 2.676 (Fig.8a).

17.265 Hz

 A_0 amplitude = 2.676

Average $f_0 = 16.598 \pm 1.038$

Figura 8a: Risultati della prova HVSR_2.

e-mail: camilladibastiano@gmail.com

Il picco soddisfa complessivamente i criteri SESAME (Fig.8b).

SESAME CRITERIA

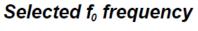

HVSF	HVSR curve reliability criteria					
$f_0 > 10 / L_w$ 12 valid windows (length > 0.58 s) out of 12						
n _c (f ₀) > 200	8287.29 > 200	ок				
$\sigma_A(f) < 2 \text{ for } 0.5f_0 < f < 2f_0$	Exceeded 0 times in 29	ок				
HV:	SR peak clarity criteria					
$\exists f \text{ in } [f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$	6.42526 Hz	ок				
$\exists f^{+} \text{ in } [f_{0}, 4f_{0}] \mid A_{H/V}(f^{+}) < A_{0}/2$	26.93691 Hz	ок				
A ₀ > 2	2.68 > 2	ОК				
$f_{\text{peak}}[A_{\text{H/V}}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	4.82% <= 5%	ок				
$\sigma_{\rm f} < \epsilon({\rm f_0})$	1.03815 >= 0.86326	NO				
$\sigma_A(f_0) < \theta(f_0)$	1.08157 < 1.58	OK				
Overall criteria fulfillment						

Figura 8b: Risultati della prova HVSR_2.

SARA electronic instruments srl - GeoExplorer HVSR 2.2.1

www.sara.pg.it

L'altro picco presenta un rapporto H/V maggiore rispetto al precedente, infatti presenta un'ampiezza di 3.009 ed interessa frequenze più basse: $f_0 = 0.445$ Hz (con media di $f_0 = 0.445 \pm 0.080$ Hz) (Fig.9a).

0.445 Hz

 A_0 amplitude = 3.009

Average $f_0 = 0.467 \pm 0.080$

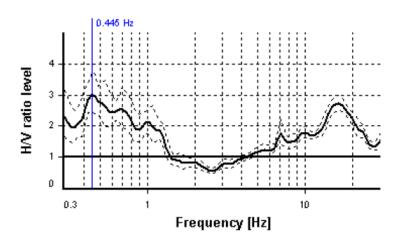


Figura 9a: Risultati della prova HVSR_2

e-mail: camilladibastiano@gmail.com

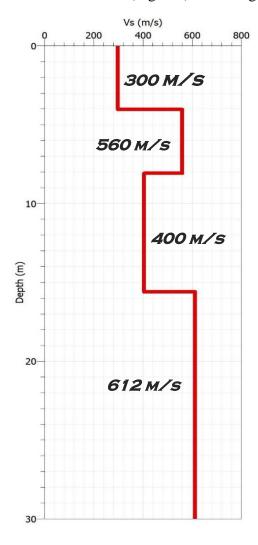
Il picco soddisfa complessivamente i criteri SESAME (Fig.9b).

SESAME CRITERIA

HVSI	HVSR curve reliability criteria					
$f_0 > 10 / L_w$	$f_0 > 10 / L_w$ 12 valid windows (length > 22.45 s) out of 12					
n _c (f ₀) > 200	213.83 > 200	OK				
$\sigma_A(f) < 3 \text{ for } 0.5f_0 < f < 2f_0$	Exceeded 0 times in 23	OK				
н٧	SR peak clarity criteria					
$\exists f \text{ in } [f_0/4, f_0] \mid A_{H/V}(f) < A_0/2$	0 Hz	NO				
$\exists f^{+} \text{ in } [f_{0}, 4f_{0}] \mid A_{H/V}(f^{+}) < A_{0}/2$	1.32142 Hz	OK				
A ₀ > 2	3.01 > 2	ок				
$f_{peak}[A_{H/V}(f) \pm \sigma_A(f)] = f_0 \pm 5\%$	4.82% <= 5%	ок				
$\sigma_f < \epsilon(f_0)$	0.08036 < 0.0891	OK				
$\sigma_A(f_0) < \theta(f_0)$	1.23913 < 2.5	OK				
Overall criteria fulfillment						

Figura 9b: Risultati della prova HVSR_1.

SARA electronic instruments srl - GeoExplorer HVSR 2.2.1


www.sara.pg.it

In sintesi, anche la prova HVSR_2, ha messo in evidenza due contrasti di impedenza sismica: quello a 17.265 Hz, che interessa la porzione superficiale del sottosuolo; l'altro picco (a 0.445 Hz) fa supporre la presenza di un contatto litostratigrafico ad elevate profondità che va ad individuare il substrato dell'area in esame.

2.1.2 PROVE SISMICHE: PROVA MASW

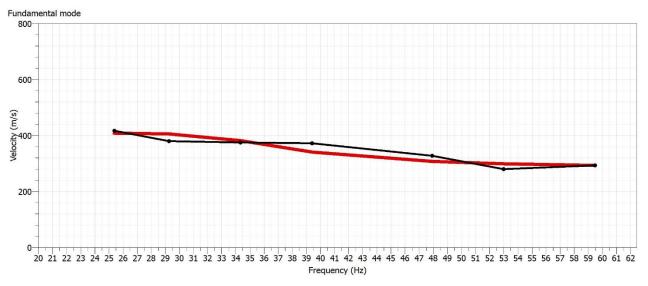
Il metodo MASW (Multichannel Analysis of Surface Waves) è una tecnica di indagine non invasiva, che consente di individuare il profilo di velocità delle onde di taglio verticali Vs, basandosi sulla misura delle onde superficiali. L'indagine MASW è stata eseguita attraverso l'impiego del sismografo multicanale "DoReMi- Sara" al quale è stata connessa una catena geofonica dotata di 16 geofoni verticali da 4,5 Hz. L'interpretazione è stata effettuata con software appositi (Geopsy) mentre il processo di inversione, necessario per la ricostruzione sismo-stratigrafica del sito, è stato effettuato tramite il codice di calcolo "Dinver" (http://www.geopsy.org/). Di seguito vengono riportati i profili delle velocità delle onde S ricavati dalle prove MASW realizzate nel sito in esame. I tracciati delle registrazioni e le elaborazioni effettuate sono riportati per intero in *Allegato 4*.

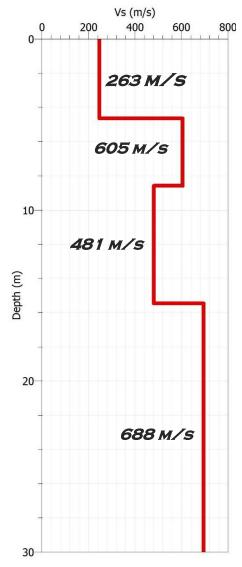
- <u>MASW 1</u>: 16 geofoni posti ad una interdistanza di 3 m e le energizzazioni sono state prodotte ad una distanza di 4 m dell'estremo dall'array geofonico. Di seguito il profilo di velocità (Fig.10a), tabella dei risultati (Fig.10b) e il fitting della curva di dispersione (Fig.10c) per la MASW_1.

MASW 1						
Depth at the bottom of the layer (m)	Thickness (m)	Vs (m/s)				
4	4	300				
8,1	4,1	560				
15,7	7,6	400				
30	14,3	612				
Veq ₃₀₌ 476						

Figura 10a: Risultati dell'analisi MASW_1 effettuata nell'area di progetto (ubicazioni e l'elaborazione completa della prova in *Allegato 4*).

Figura 10b: Profilo delle velocità delle onde di taglio (Vs m/s)




Figura 10c: Fitting della curva di dispersione teorica e sperimentale

L'elaborazione della MASW_1 ha messo in evidenza la presenza di 4 sismostrati (l'elaborazione è stata effettuata fino alla profondità di 30 m dal piano campagna così come richiesto da normativa):

- o **Primo sismostrato:** da 0 m a 4 m di profondità le velocità si attestano su valori di 300 m/s;
- Secondo sismostrato: da 4 m a 8,1 m di profondità si assiste ad un aumento delle velocità con Vs di 560 m/s;
- Terzo sismostrato: da 8,1 m a 15,7 m si ha un decremento della velocità delle onde di taglio che si attestano su valori di 400 m/s;
- Quarto sismostrato: da 15,7 m a 30 m si assiste ad un nuovo incremento delle velocità delle onde di taglio che raggiungono valori di 612 m/s.
- <u>MASW 2</u>: 16 geofoni posti ad una interdistanza di 2 m e le energizzazioni sono state prodotte ad una distanza di 4 m dell'estremo dall'array geofonico. Di seguito il profilo di velocità (Fig.11a), tabella dei risultati (Fig.11b) e il fitting della curva di dispersione (Fig.11c) per la MASW_2.

MASW 2		-				
Depth at the bottom of the layer (m)	Thickness (m)	Vs (m/s)				
4,6	4,6	263				
8,5	3,9	605				
15,4	6,9	481				
30	14,6	688				
Veq ₃₀₌ 504						

Figura 11a: Risultati dell'analisi MASW_2 effettuata nell'area di progetto (ubicazioni e l'elaborazione completa della prova in *Allegato 4*).

Figura 11b: Profilo delle velocità delle onde di taglio ($Vs\ m/s$)

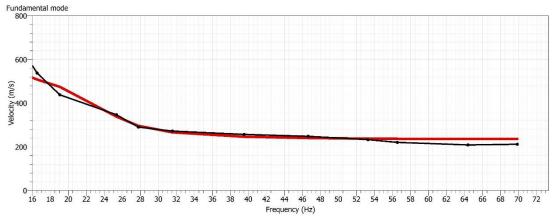
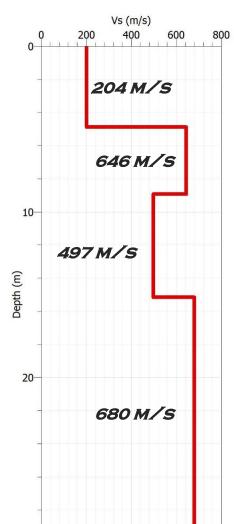



Figura 11c: Fitting della curva di dispersione teorica e sperimentale

L'elaborazione della MASW_2 ha messo in evidenza la presenza di 4 sismostrati (l'elaborazione è stata effettuata fino alla profondità di 30 m dal piano campagna così come richiesto da normativa):

- o **Primo sismostrato:** da 0 m a 4,6 m di profondità le velocità si attestano su valori di 263 m/s;
- Secondo sismostrato: da 4,6 m a 8,5 m di profondità si assiste ad un aumento delle velocità con Vs di 605 m/s;
- **Terzo sismostrato:** da 8,5 m a 15,4 m si ha un decremento della velocità delle onde di taglio che si attestano su valori di 481 m/s;
- Quarto sismostrato: da 15,4 m a 30 m si assiste ad un nuovo incremento delle velocità delle onde di taglio che raggiungono valori di 688 m/s.
- <u>MASW 3</u>: 16 geofono posti ad una interdistanza di 2 m e le energizzazioni sono state prodotte ad una distanza di 4 m dell'estremo dall'array geofonico. Di seguito il profilo di velocità (Fig.12a), tabella dei risultati (Fig.12b) e il fitting della curva di dispersione (Fig.12c) per la MASW_3.

30

MASW 3		
Depth at the bottom of the layer (m)	Thickness (m)	Vs (m/s)
4,8	4,8	204
8,9	4,1	646
15	6,1	497
30	15	680
Veq ₃₀₌ 467		

Figura 12a: Risultati dell'analisi MASW_3 effettuata nell'area di progetto (ubicazioni e l'elaborazione completa della prova in *Allegato 4*).

Figura 12b: Profilo delle velocità delle onde di taglio (Vs m/s)

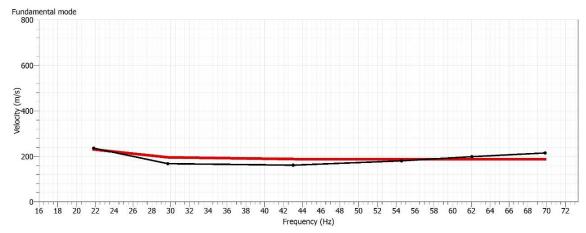


Figura 12c: Fitting della curva di dispersione teorica e sperimentale

L'elaborazione della MASW_3 ha messo in evidenza la presenza di 4 sismostrati (l'elaborazione è stata effettuata fino alla profondità di 30 m dal piano campagna così come richiesto da normativa):

- o **Primo sismostrato:** da 0 m a 4,8 m di profondità le velocità si attestano su valori di 204 m/s;
- Secondo sismostrato: da 4,8 m a 8,9 m di profondità si assiste ad un aumento delle velocità con Vs di 646 m/s;
- Terzo sismostrato: da 8,9 m a 15 m si ha un decremento della velocità delle onde di taglio che si attestano su valori di 497 m/s;
- Quarto sismostrato: da 15 m a 30 m si assiste ad un nuovo incremento delle velocità delle onde di taglio che raggiungono valori di 680 m/s.

2.1.3 PROVE SISMICHE: PROVA DOWN-HOLE

Il rilievo geofisico, basato sull'impiego della sismica in foro tipo down-hole, è stato eseguito allo scopo di caratterizzare, da un punto di vista sismico, le varie formazioni litologiche affioranti nell'area in esame.

L'indagine in foro è stata eseguita nel foro di sondaggio S1 della lunghezza di 30 metri.

I risultati di campagna, e la loro interpretazione in chiave sismica, sono riportati in *Allegato 6*.

Di seguito (Fig. 13) si riportano le tabelle che riassumono i risultati ottenuti:

VELOCITÀ ONDE P

Sismostrati	Profondità (m)	Vp (m/s)
1	3	545
2	8	1220
3	12	1081
4	30	1833

PARAMETRI ONDE S

Sismostrati	Profondità (m)	Vs (m/s)	Modulo di taglio (Mpa)	Modulo di Bulk (Mpa)	Modulo di Young (Mpa)	Modulo di Poisson v
1	4	242	120.59	450.82	332.16	0.38
2	8.5	529	609.60	2429.51	1687.65	0.38
3	18	367	274.60	2016.26	788.01	0.43
4	30	538	587.15	6032.81	1706.10	0.45

VELOCITÀ EQUIVALENTE Veq

DownHole			
Depth at the bottom of the layer (m)	Thickness (m)	Vs (m/s)	
4	4	242	
8.5	4.5	529	
18	9.5	367	
30	12	538	
Veq ₃₀₌ 410			

Figura 13: risultati della prova Down – Hole effettuata nel foro di sondaggio S1.

Considerando la sismostratigrafia ricavata dall'indagine DownHole eseguita nel sondaggio S1, il calcolo effettuato ha determinato il seguente valore di Vs equivalente:

$$Vs_{eq} = 410 \text{ m/s}.$$

3. MODELLO SISMICO DEL TERRENO

Il modello sismico del terreno è stato ricavato dall'interpretazione delle prove geofisiche effettuate per il sito in esame. In particolare i risultati si riferiscono a 3 prove sismiche di tipo MASW, 2 prove di sismica passiva di tipo HVSR e 1 prova di sismica in foro di tipo DownHole.

Dalle prove MASW è stato possibile ricostruire un profilo sismico del sottosuolo dell'area in esame caratterizzato dalla presenza quattro sismostrati così come illustrato in Fig. 14.

Sismostrato	Riferimento Prova	Profondità (m)	Vs (m/s)
	MASW_1	0 m – 4.0 m	300.0 m/s
1	MASW_2	0 m – 4.6 m	263.0 m/s
	MASW_3	0 m – 4.8 m	204.0 m/s
	MASW_1	4.0 m – 8.1 m	560.0 m/s
2	MASW_2	4.6 m – 8.5 m	605.0 m/s
	MASW_3	4.8 m – 8.9 m	646.0 m/s
	MASW_1	8.1 m – 15.7 m	400.0 m/s
3	MASW_2	8.5 m – 15.4 m	481.0 m/s
	MASW_3	8.9 m – 15.0 m	497.0 m/s
	MASW_1	15.7 m – 30.0 m	612.0 m/s
4	MASW_2	15.4 m – 30.0 m	688.0 m/s
	MASW_3	15.0 m – 30.0 m	680.0 m/s

Figura 14: Tabella riassuntiva del modello sismico dell'area in esame dalle prove MASW

- 1) Il primo sismostrato è caratterizzato da uno spessore variabile tra 4.0 e 4.8 m e presenta una velocità delle onde di taglio Vs compresa in un range che va da 204 m/s a 300 m/s;
- 2) il secondo sismostrato ha uno spessore variabile tra 3.9 m e 4.1 m; la Vs per questo sismostrato varia nel range 560 m/s 646 m/s;
- 3) il terzo sismostrato è caratterizzato da uno spessore variabile tra 6.1 e 7.6 m e da un range di velocità delle onde di taglio tra 400 m/s e 497 m/s;
- **4**) il quarto sismostrato ha uno spessore variabile tra 14.3 e 15 m e presenta velocità comprese in un range che va da 612 m/s a 688 m/s.

Anche la prova DownHole eseguita all'interno del foro di sondaggio ha restituito un modello sismostratigrafico costituito da 4 sismostrati (Fig. 15):

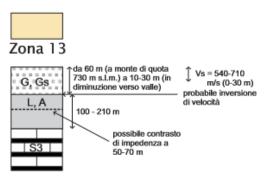
Sismostrato	Profondità (m)	Vs (m/s)
1	0 m – 4.0 m	242 m/s
2	4.0 m – 8.5 m	529 m/s
3	8.5 m – 18.0 m	367 m/s
4	18.0 m – 30.0 m	538 m/s

Figura 15: Tabella riassuntiva del modello sismico dell'area in esame dalla prova Down Hole.

Considerando una media dei valori degli spessori e delle velocità ricavati da tutte le prove sismiche effettuate nell'area in esame ne consegue il seguente modello sismico del terreno (Fig. 16):

MODELLO SISMICO DEL SITO		
SISMOSTRATO	Profondità media	VS MEDIA
	(m)	(m/s)
1	0.0 m – 4.3 m	252 m/s
2	4.3 m – 8.5 m	585 m/s
3	8.5 m – 16.0 m	436 m/s
4	16.0 m – 30.0 m	629.5 m/s

Figura 16: Tabella riassuntiva del modello sismico dell'area in esame come media di tutte le prova sismiche effettuate.


- 1) Il primo sismostrato è caratterizzato da una velocità media delle onde di taglio Vs di 252 m/s e uno spessore medio di 4.3 m;
- 2) il secondo sismostrato dalla profondità media di 4.3 m fino a 8.5 m, è caratterizzato da una velocità media Vs di 585 m/s;
- 3) il terzo sismostrato dalla profondità media di 8.5 m fino a 16.0 m, è caratterizzato da una velocità Vs media pari a 436 m/s;
- 4) il quarto sismostrato da 16.0 m fino a 30.0 m, ha una velocità media Vs di 629.5 m/s.

Le prove HVSR effettuate vanno a confermare il modello sismostratigrafico sopra riportato; di fatto entrambe le prove effettuate mostrano un picco in corrispondenza di frequenze comprese tra 17 e 19 Hz e quindi confermano un contrasto di impedenza sismica a profondità < 5 m dal piano campagna. Inoltre le prove HVSR danno informazioni sulla profondità del bedrock dell'area; in entrambe le

prove è osservabile il picco a frequenze basse (0,4/0,5 Hz) che corrisponde ad alte profondità (superiori ai 100-150 m).

I risultati dell'analisi sismica effettuata per l'area in esame sono congrui con gli elaborati dello studio di *Microzonazione sismica di livello 1* del Comune di Avezzano. Infatti l'area ricade nella *Zona 13* descritta in tale studio come segue (Fig. 17):

terreni caratterizzati da ghiaie e ghiaie sabbiose da 60 m di spessore (a monte di quota 730 m s.l.m.) a 10-30 m (in diminuzione verso valle) con Vs media compresa tra i 540 m/s e i 740 m/s. Al di sotto, con probabile inversione di velocità delle onde di taglio, si rinvengono depositi caratterizzati da limi e argille con uno spessore variabile tra i 100 m e i 210 m, fino al contatto con il substrato stratificato dell'area caratterizzato da alternanza di litotipi (25%<L<75%) e stratificato (probabile Vs<800 m/s).

Figura 17: colonna stratigrafica relativa alla Zona 13 della Carta delle MOPS dello studio di *Microzonazione* Sismica di livello 1 del Comune di Avezzano

In riferimento alla normativa D.M. 17/01/2018 e Circolare del 27.07.2018, tenendo conto dei risultati delle indagini effettuate, è stato definito il parametro V_{Seq} (velocità delle onde di taglio equivalente), calcolato mediante la seguente formulazione:

$$V_{S,eq} = \frac{H}{\sum_{i=1}^{N} \frac{h_i}{V_{S,i}}}$$

Hi = spessore in m;

Vs,i= velocità delle onde di taglio nello strato i-esimo;

N = numero di strati;

H = profondità del substrato, definito come quella formazione costituita da roccia o terreno molto rigido, caratterizzata da Vs non inferiore a 800 m/s

Per depositi con profondità H del substrato superiore a 30 m, la velocità equivalente delle onde di taglio Vs_{eq} è definita dal parametro Vs30, ottenuto ponendo H=30 m nella precedente espressione e considerando le proprietà degli strati di terreno fino a tale profondità.

Nel caso in esame essendo presenti terreni di copertura con spessori maggiori di 30 m è stato utilizzato il calcolo della Vs equivalente come Vs30.

Il valore ricavato dai risultati medi derivanti da tutte le prove geofisiche effettuate (cfr. Fig. 16) per il sito in esame è:

$V_{Seq30}=471 \text{ m/s}$

Le categorie di sottosuolo che permettono l'utilizzo dell'approccio semplificato sono definite nella tabella riportata in Fig. 10.

Categoria	Descrizione
A	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteristiche meccaniche più scadenti con spessore massimo pari a 3 m.
В	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s.
С	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti con pro- fondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.
D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 100 e 180 m/s.
E	Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le categorie C o D, con profondità del substrato non superiore a 30 m.

Figura 10: Categorie di Sottosuolo secondo le NTC18.

Essendo il sottosuolo dell'area in esame caratterizzato da depositi con Vs30 di 471 m/s, si può inquadrare l'area nella categoria di profilo stratigrafico del suolo di fondazione B: "Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s."

Per quanto riguarda le caratteristiche della superficie topografica, l'area in esame ricade nella categoria topografica T1: Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i $\leq 15^{\circ}$.

4. CONCLUSIONI

Nell'area sono state effettuate le seguenti prove geofisiche:

- n. 3 prove MASW
- n. 2 prove HVSR
- n. 1 prova DownHole

Sulla base dei risultati ottenuti dall'elaborazione delle suddette prove è stata definita per il sito in esame una *Vs equivalente di 471 m/s*, ascrivibile ad una *categoria di suolo di tipo B*.

Tuttavia, vista la tipologia di opera di futuro progetto (complesso scolastico), vista la presenza di un'inversione di velocità delle onde sismiche, si è ritenuto più opportuno effettuare un'analisi di risposta sismica locale sito-specifica al fine di definire con maggior dettaglio lo spettro di risposta relativo alla particolare situazione sismostratigrafica del sito.

Gli spettri di risposta relativi alla categoria di suolo B così come da approccio semplificato da normativa, sono stati utilizzati per il confronto con gli spettri di risposta derivanti dall'analisi di sito effettuata; questi ultimi sono risultati maggiori rispetto a quelli forniti dalla normativa. I risultati in forma completa dell'analisi sono riportati nella *Relazione di Risposta Sismica Locale* parte integrante della presente relazione.

Dott.ssa Geol. Camilla DI BASTIANO

Avezzano 07/12/2018

Il Geologo Dott.ssa Camilla Di Bastiano

Via Mons. Bagnoli, 23 67051, Avezzano (AQ) Iscr. AP sez. A Geologi dell'Abruzzo n. 575